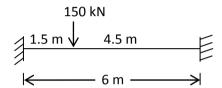
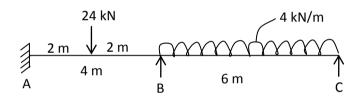
Code: 9A01403

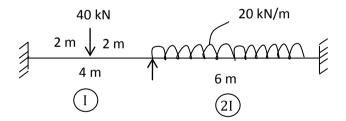
B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2014/2015

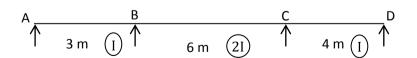
STRUCTURAL ANALYSIS - I


(Civil Engineering)

Time: 3 hours Max. Marks: 70

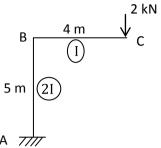

Answer any FIVE questions
All questions carry equal marks


- 1 (a) What are the advantages of fixed beam?
 - (b) A fixed beam of 6 m span carries a contentrated load of 150 kN at a distance of 1.5 m from the left support. Calculate the B.M at mid span and draw BMD.

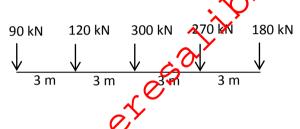

2 Analyze the beam by Clapeyron's theorem and draw BMD & SFD.

3 Analyze the beam by slope deflection method.

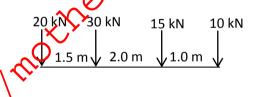
Analyze the beam by moment distribution method. The beam at supports B and C sinks by 2 mm and 7 mm. Take E = 200 kN/mm^2 and I = $2.5 \times 10^7 \text{ mm}^4$.



Contd. in page 2


Code: 9A01403

R09


5 Determine the vertical deflection at 'C' in the frame shown below. Take $E=200\times$ ~1.005P0X $10^6 kN/m^2$ and I = 3 x 10^7 mm⁴.

A train of five wheel loads crosses a span of 30 m calculate max +ve and -ve SF at 6 mid span and absolute BM anywhere in the span.

A simply supported beam of span 20 m is subjected to a set of loads of magnitude of 7 20 kN, 30 kN, 15 kN and 10 kN spaced as shown in figure and it moving from left to right with 10 kN load leading.

- Write short notes: 8
 - Statistical redundancy criterion for space frame.
 - Castigliano's theorem I and II.
 - Kinematic indeterminacy.